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1. Introduction 
Abstract algebra serves as the conceptual bedrock for much of 

modern mathematics and its applications. Yet, the cognitive 

underpinnings that enable humans to reason about groups, rings, 

fields, and other algebraic structures remain largely elusive. While 

much research has focused on procedural fluency and conceptual 

understanding in mathematics, few studies have delved into the 

cognitive frameworks that scaffold higher-order algebraic 

reasoning. This paper aims to bridge this gap by examining how 

individuals mentally construct and navigate algebraic structures. 

 

 

 

 

Abstract algebra, encompassing the study of algebraic structures 

such as groups, rings, fields, and vector spaces, serves as a 

cornerstone of modern mathematics and theoretical computer 

science. Its applications range from cryptography and coding 

theory to quantum mechanics and symmetry analysis. Mastery of 

abstract algebra is thus a critical milestone for students and 

researchers in mathematical sciences. However, the cognitive 

mechanisms underlying proficiency in abstract algebra remain 

poorly understood. 

Abstract 

This study explores the cognitive architectures supporting abstract algebraic reasoning, a foundational component of higher 

mathematics. Despite its centrality, little is known about the mental structures and processes that facilitate such reasoning. 

Through a mixed-methods approach integrating neurocognitive assessments, eye-tracking analyses, and qualitative problem-

solving interviews, We identify key cognitive patterns, including the use of symbolic schemas, hierarchical abstraction, and 

procedural-structural duality. The findings provide evidence for domain-specific cognitive modules in advanced algebraic 

reasoning, with implications for educational practices and cognitive theory development. 
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While traditional educational research in mathematics has focused 

on arithmetic and algebraic operations at the primary and 

secondary levels (Dehaene, 1997; Siegler & Booth, 2004), the leap 

to abstract algebra introduces a qualitatively different set of 

cognitive demands. Abstract algebra involves navigating complex 

symbolic representations, forming and manipulating high-level 

abstractions, and reasoning about structures that are often detached 

from concrete referents (Sfard, 1991; Tall, 2004). These demands 

pose challenges not only to learners but also to educators and 

researchers attempting to scaffold abstract reasoning. 

Several theoretical frameworks suggest mechanisms that might 

support abstract algebraic reasoning. Cognitive load theory posits 

that learners‘ working memory capacity is strained by the high 

intrinsic and extraneous load of complex mathematical tasks 

(Sweller, 1988). Dual-process theories propose that reasoning 

involves both fast, intuitive processes and slow, deliberative 

processes (Evans, 2008), which might manifest in mathematicians 

as the integration of pattern recognition and rigorous symbolic 

manipulation. Additionally, research on expert-novice differences 

in mathematics indicates that experts often employ chunking 

strategies, organizing symbolic information into higher-order units 

to reduce cognitive load (Chi, Glaser, & Rees, 1982; Harel, 2008). 

Despite these insights, empirical studies that directly investigate 

the cognitive structures unique to abstract algebra are scarce. Most 

existing research has concentrated on procedural fluency, 

conceptual understanding, and common misconceptions in algebra 

learning (Kieran, 1992; Hiebert & Lefevre, 1986), with limited 

exploration of how advanced reasoners mentally construct and 

navigate algebraic structures. Understanding these cognitive 

processes is not only theoretically significant but also has practical 

implications for curriculum design, pedagogy, and the 

development of intelligent tutoring systems for advanced 

mathematics. 

This paper seeks to address this gap by investigating the cognitive 

structures and processes that underlie reasoning in abstract algebra. 

By integrating neurocognitive assessments, eye-tracking analyses, 

and qualitative interviews, we aim to unravel how individuals at 

different expertise levels approach algebraic problem-solving. Our 

findings are expected to contribute to cognitive theories of 

mathematical reasoning and inform educational practices that 

foster deep conceptual understanding and flexible problem-solving 

skills in abstract algebra. 

2. Literature Review 
Research in mathematical cognition has largely emphasized 

arithmetic and elementary algebra (e.g., Dehaene, 1997; Siegler & 

Booth, 2004). More advanced reasoning, such as in abstract 

algebra, involves complex symbolic manipulation and abstraction 

processes (Tall, 2004). Prior studies suggest that expert 

mathematicians employ chunking strategies and rely on 

internalized symbolic schemas (e.g., Sfard, 1991; Harel, 2008). 

Cognitive load theory (Sweller, 1988) and dual-process models 

(Evans, 2008) also offer insights into the interplay between 

intuitive and analytical processes. However, empirical 

investigations specific to abstract algebra remain sparse. 

 

2.1 Cognitive Structures in Abstract Algebra 

Recent studies have delved into the cognitive frameworks that 

underpin abstract algebraic reasoning. The APOS Theory (Actions, 

Processes, Objects, Schemas) remains influential, emphasizing the 

transformation of processes into mental objects and the 

development of schemas through reflective abstraction. This theory 

has been instrumental in understanding how learners internalize 

algebraic concepts. Building on this, research by Hausberger 

(2017) explored the epistemological and didactical aspects of 

thematization in abstract algebra, focusing on the homomorphism 

concept. This work highlighted the importance of structural 

understanding in grasping algebraic concepts. Furthermore, studies 

have examined the procedural structural duality in algebraic 

thinking. Simpson and Stehlíková (2006) investigated the 

acquisition of "structural sense" in relation to understanding 

commutative rings, emphasizing the shift from focusing on 

particular objects and operations to understanding the 

interrelationships caused by these operations.  

2.2 Integration of Artificial Intelligence in Algebraic 

Reasoning 

The intersection of artificial intelligence (AI) and abstract algebra 

has garnered attention in recent years. Petrov and Muise (2023) 

explored the application of automated planning techniques to 

construct elementary proofs in abstract algebra, demonstrating the 

potential of AI in facilitating mathematical reasoning. In a similar 

vein, Shaska and Shaska (2025) introduced a neuro-symbolic 

approach to classifying Galois groups of polynomials. By 

integrating neural networks with symbolic reasoning, their model 

outperformed purely numerical methods in accuracy and 

interpretability, offering new insights into algebraic structures. 

Additionally, the development of the ALgebra-Aware Neuro-Semi-

Symbolic (ALANS) learner by Zhang et al. (2021) showcased a 

hybrid approach combining neural visual perception with algebraic 

abstract reasoning. This model demonstrated improved systematic 

generalization in reasoning tasks, highlighting the efficacy of 

integrating algebraic representations in AI systems.  

2.3 Educational Strategies and Technological 

Interventions 

Advancements in educational methodologies have emphasized the 

role of technology in enhancing abstract algebra learning. Research 

by Mrope (2025) highlighted the benefits of incorporating 

computational thinking components, such as decomposition and 

pattern recognition, in teaching mathematical proofs to prospective 

teachers. This approach improved students' problem-solving skills 

and conceptual understanding. Moreover, studies have explored the 

use of AI tools like ChatGPT in teaching group concepts in 

abstract algebra. These tools have been found to facilitate 

interactive learning environments, allowing students to engage 

with complex algebraic ideas more effectively.  Additionally, the 

integration of diagrammatic self-explanation strategies has been 

shown to enhance conceptual knowledge in early algebra. By 

encouraging students to visualize and articulate their reasoning 

processes, these strategies support deeper understanding and 

retention of algebraic concepts. 

3. Methodology 
3.1 Participants 

A total of 30 individuals participated in the study, comprising 15 

graduate students and 15 professional mathematicians specializing 

in algebra. Participants were recruited from universities and 

research institutions, ensuring a range of expertise levels. All 

participants provided informed consent in accordance with 

institutional review board guidelines. 

3.2 Instruments and Procedures 
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Neurocognitive Assessment: Functional Magnetic Resonance 

Imaging (fMRI) was employed to observe brain activation patterns 

during algebraic problem-solving tasks. Participants were 

presented with algebraic problems of varying complexity while 

undergoing fMRI scanning. 

Eye-Tracking Analysis: An eye-tracking system recorded 

participants' eye movements as they solved algebraic proofs on a 

computer screen. Metrics such as fixation duration, saccade length, 

and dwell time were analyzed. 

Qualitative Interviews: Semi-structured interviews were conducted 

post-task to explore participants' reasoning strategies, focusing on 

abstraction and symbolic manipulation. Interviews were audio-

recorded and transcribed for thematic analysis. 

3.3 Data Analysis 

Neuroimaging Data: fMRI data were preprocessed and analyzed 

using Statistical Parametric Mapping (SPM12) software. 

Activation maps were generated to identify brain regions engaged 

during problem-solving. 

Eye-Tracking Data: Eye-tracking data were analyzed to generate 

heatmaps and scan paths, highlighting areas of interest and visual 

attention patterns. Statistical analyses, including t-tests, were 

conducted to compare metrics between expert and novice groups.  

Qualitative Data: Interview transcripts were coded thematically 

using NVivo software to extract patterns in reasoning strategies 

and cognitive approaches to problem-solving. 

4. Results 
4.1 Neurocognitive Patterns 

fMRI analyses revealed significant activation in the dorsolateral 

prefrontal cortex (DLPFC) and intraparietal sulcus (IPS) during 

algebraic reasoning tasks (p < 0.001). These regions are associated 

with working memory and symbolic manipulation, suggesting their 

involvement in abstract algebraic reasoning. 

Figure 1: Brain Activation Map Highlighting DLPFC and IPS 

During Algebraic Problem-Solving 

4.2 Eye-Tracking Findings 

Eye-tracking data indicated that expert participants exhibited 

shorter fixation durations on symbolic elements and longer dwell 

times on structural features of problems compared to novices. 

Heatmaps demonstrated concentrated attention on key structural 

components in experts, whereas novices displayed more scattered 

attention patterns. 

Figure 2: Eye-Tracking Heatmaps Comparing Expert and 

Novice Participants 

Table 1: Eye-Tracking Metrics Comparison Between Experts 

and Novices 

Metric 

Experts 

(Mean ± 

SD) 

Novices 

(Mean ± 

SD) 

t-value p-value 

Fixation 

Duration (ms) 
220 ± 30 310 ± 45 -6.89 <0.001 

Dwell Time 

on Structures 

(s) 

5.2 ± 0.8 3.1 ± 0.7 8.15 <0.001 

Saccade 

Length (°) 
2.5 ± 0.4 1.8 ± 0.3 5.47 <0.001 

Experts exhibited significantly shorter fixation durations (220 ms) 

compared to novices (310 ms), with a highly significant difference 

(t = -6.89, p < 0.001). Shorter fixation durations among experts 

suggest a more efficient visual processing mechanism, where 

experts can extract relevant information quickly without needing 

prolonged gaze on any single point. This aligns with existing 

research that indicates experts tend to process complex stimuli 

faster due to well-developed cognitive schemas and familiarity 

with task-relevant cues. In contrast, novices‘ longer fixations may 

reflect increased cognitive load and uncertainty, as they spend 

more time attempting to decode unfamiliar symbols or concepts. 

Experts spent more time fixating on algebraic structures (mean 

dwell time: 5.2 s) compared to novices (3.1 s), and this difference 

was statistically significant (t = 8.15, p < 0.001). This suggests that 

experts allocate their visual attention strategically to the core 

structural components of the problem, reflecting deeper conceptual 

engagement. The longer dwell times on these meaningful elements 

may indicate that experts are analyzing the relationships and 

properties embedded in the algebraic structures rather than being 

distracted by peripheral information. Novices‘ lower dwell time on 

structures could imply a lack of focus or an inability to identify the 

critical components that drive abstract reasoning. 

The mean saccade length was significantly longer for experts (2.5°) 

than for novices (1.8°), with a t-value of 5.47 (p < 0.001). Longer 

saccades in experts suggest more deliberate and efficient shifts of 

attention between relevant regions within the visual field. This 

pattern implies that experts can anticipate where important 

information is located and jump rapidly between these key areas, 

facilitating holistic understanding. Conversely, novices 

demonstrate shorter saccades, indicative of a more local and less 

efficient search strategy, often revisiting the same regions or 

moving incrementally due to less structured visual search patterns. 

The eye-tracking data collectively reveal distinct visual-cognitive 

strategies employed by experts versus novices during abstract 

algebraic reasoning. Experts demonstrate: Efficient visual 

encoding (shorter fixations), Focused attention on structural 

elements (longer dwell time) and Strategic visual scanning (longer 

saccades). These differences reflect the underlying cognitive 

structures supporting abstract reasoning, where experts utilize 

internalized schemas to guide their attention effectively, reducing 

cognitive load and enhancing problem-solving efficiency. For 

educators and instructional designers, these insights highlight the 

importance of helping learners develop skills in identifying and 

attending to critical algebraic structures, potentially through 

targeted visual scaffolding or training in effective visual search 

strategies. 

4.3 Thematic analysis of the interview transcripts 

revealed nuanced insights into participants’ cognitive 

processes during abstract algebraic reasoning. Three 

overarching themes emerged: Symbolic Schemas, 

Hierarchical Abstraction, and Procedural-Structural 

Duality, each with distinct subthemes. 

4.3.1Symbolic Schemas 

Participants, especially experts, frequently described relying on 

internalized symbolic frameworks to navigate complex algebraic 

problems. These schemas functioned as cognitive blueprints for 

organizing and retrieving information efficiently. 

Subtheme 1: Mental Templates 
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Experts reported using mental templates representing familiar 

structures, such as cyclic groups or commutative rings, to interpret 

problems rapidly. For example, one mathematician noted: 

―When I see certain notations or properties, I 

immediately think of the cyclic group structure—it‘s like 

a mental shortcut that organizes everything for me.‖ 

Subtheme 2: Symbol-Meaning Integration 

Participants emphasized that symbols were not merely notational 

but carried embedded meanings. This integration facilitated 

transitions between syntactic manipulations and semantic 

interpretations, enabling deeper understanding. 

Frequency Counts: 

Subtheme 
Expert 

Mentions 

Novice 

Mentions 

Mental Templates 12 4 

Symbol-Meaning Integration 10 3 

Similarly, experts mentioned symbol-meaning integration 10 times, 

whereas novices did so only 3 times. Symbol-meaning integration 

reflects the ability to connect algebraic symbols with their 

underlying concepts or operations, a critical skill in abstract 

algebra. Experts‘ frequent emphasis on this subtheme indicates 

their superior capacity to interpret symbols contextually, 

facilitating deeper understanding and manipulation of abstract 

structures. Novices‘ fewer mentions suggest difficulties in linking 

symbolic notation to meaning, which can hinder comprehension 

and procedural fluency. This finding reinforces the cognitive load 

theory perspective that novices often face challenges managing the 

symbolic complexity of algebra (Sweller, 1988) and suggests that 

educators should focus on bridging the gap between symbols and 

their semantic content through targeted scaffolding. The disparity 

in subtheme frequencies between experts and novices reveals 

crucial cognitive differences in abstract algebraic reasoning. 

Experts‘ frequent references to mental templates and symbol-

meaning integration reflect their advanced conceptual organization 

and symbol comprehension, which are less developed in novices. 

For curriculum designers and educators, this highlights the need to: 

Incorporate explicit instruction and activities that help students 

build and apply mental templates, such as pattern recognition 

exercises and structured problem-solving frameworks. Enhance 

symbol-meaning integration through the use of multimodal 

teaching tools, including visual aids, verbal explanations, and 

interactive symbolic manipulations. By focusing on these areas, 

educators can better support novices‘ transition toward expert-like 

reasoning in abstract algebra. 

4.3.2 Hierarchical Abstraction 

Participants described moving between multiple levels of 

abstraction, often zooming in and out between concrete examples 

and generalized properties. 

Subtheme 1: Contextual Anchoring 

While working on abstract problems, participants anchored 

reasoning in specific instances, such as integer mod n examples, 

before generalizing to group axioms. A graduate student explained: 

―I start with an example, like integers mod 5, to get a 

concrete sense of how the structure behaves, and then I 

generalize to the group properties.‖ 

Subtheme 2: Recursive Abstraction 

Participants demonstrated the ability to recursively abstract, 

moving from element-level considerations to set-level properties 

and back. This was especially pronounced in experts, who 

articulated this process explicitly. 

Frequency Counts: 

Subtheme Expert Mentions Novice Mentions 

Contextual Anchoring 11 7 

Recursive Abstraction 9 2 

The subtheme of recursive abstraction shows a stark contrast: 

experts mentioned it 9 times, whereas novices mentioned it only 2 

times. Recursive abstraction involves the ability to build successive 

layers of abstraction, reflecting a deepening of conceptual 

understanding through iterative generalization and reflection. 

Experts‘ frequent references highlight their advanced capacity to 

navigate complex hierarchies of algebraic structures by recursively 

abstracting properties and relations. This cognitive ability 

underpins the flexible manipulation of abstract entities, a hallmark 

of expertise in mathematics. The scarcity of recursive abstraction 

mentioned by novices indicates that they are less adept at this 

layered thinking, often remaining at more concrete or surface 

levels of reasoning. This limitation can hinder their progress 

toward deeper conceptual insights required for mastering abstract 

algebra. 

The contrast in the frequencies of contextual anchoring and 

recursive abstraction between experts and novices illuminates 

important facets of cognitive development in abstract algebraic 

reasoning: Both groups recognize the importance of contextual 

anchoring, but experts employ it more strategically to scaffold and 

guide their reasoning. The pronounced difference in recursive 

abstraction points to a significant cognitive gap; developing 

recursive abstraction skills is critical for learners to achieve expert-

level reasoning. 

Instruction should emphasize helping students make meaningful 

connections to prior knowledge and real-world contexts to 

strengthen contextual anchoring. Teaching approaches that foster 

recursive abstraction—such as iterative problem-solving, meta-

cognitive reflection, and encouraging learners to generalize from 

specific instances—can support novices in developing expert-like 

abstraction skills. 

4.3.3 Procedural-Structural Duality 

A recurring theme was the balance between procedural fluency 

(symbol manipulation) and structural understanding (conceptual 

insights). 

Subtheme 1: Flexible Switching 

Experts reported fluidly switching between algorithmic procedures 

and structural reasoning. One participant stated: 

―I don‘t just compute; I‘m always asking why the 

computation works—what property or structure makes it 

valid.‖ 

Subtheme 2: Metacognitive Monitoring 

Participants, particularly experts, engaged in metacognitive 

monitoring, consciously reflecting on whether their manipulations 

adhered to underlying algebraic principles. This self-regulation was 

less prevalent among novices, who often focused on procedural 

steps without considering structural implications. 
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Frequency Counts: 

Subtheme 
Expert 

Mentions 
Novice Mentions 

Flexible Switching 13 5 

Metacognitive 

Monitoring 
10 3 

Experts referenced flexible switching 13 times compared to 5 

mentions by novices. Flexible switching refers to the ability to shift 

efficiently between different strategies, perspectives, or 

representations while engaging with abstract algebraic problems. 

This notable difference highlights a key characteristic of expert 

reasoning: adaptability. Experts demonstrate cognitive flexibility, 

moving seamlessly between algebraic structures, symbolic 

manipulations, conceptual understandings, and problem-solving 

strategies. Their frequent engagement in flexible switching 

suggests that they can adjust their approach based on problem 

demands, recognize multiple solution paths, and avoid fixation on 

a single method. In contrast, novices‘ limited mentions indicate a 

tendency toward rigid thinking and a struggle to adapt their 

strategies. This rigidity can result from underdeveloped conceptual 

frameworks and limited familiarity with algebraic reasoning, 

making them more prone to errors or inefficiencies when their 

initial approach is ineffective. 

The frequency of metacognitive monitoring mentions also shows a 

sharp contrast: 10 times by experts versus 3 by novices. 

Metacognitive monitoring involves the conscious regulation of 

one‘s cognitive processes, such as planning, evaluating, and 

adjusting strategies based on progress and outcomes. Experts‘ 

higher mention rate suggests they actively and habitually reflect on 

their reasoning processes, assess the appropriateness of their 

approaches, and recognize when adjustments are necessary. This 

capacity to ―think about one‘s thinking‖ is a hallmark of expert 

performance and is closely tied to successful problem-solving in 

complex, abstract domains like algebra. Novices‘ low frequency of 

mentions suggests limited metacognitive awareness. They may 

focus on surface-level operations without stepping back to assess 

their understanding or adjust their strategies. This limitation can 

impede learning, as it reduces opportunities to identify errors and 

refine problem-solving approaches. 

These findings illustrate important differences in the cognitive 

strategies of experts and novices in abstract algebraic reasoning: 

Flexible Switching is more prevalent among experts, highlighting 

their adaptability and broad problem-solving repertoire. 

Metacognitive Monitoring is also more frequent among experts, 

underscoring the importance of reflective and self-regulatory 

processes in navigating complex tasks. 

To help novices develop flexible switching, educators can 

introduce varied problem types, encourage multiple solution 

approaches, and model switching strategies explicitly. For 

metacognitive development, structured reflective activities (e.g., 

think-aloud protocols, problem-solving journals, and self-

assessment checklists) can scaffold learners‘ ability to monitor and 

regulate their reasoning. By fostering these cognitive skills, 

instructional interventions can help bridge the gap between novice 

and expert reasoning in abstract algebra. 

4.3.4 Emergent Subthemes 

During coding, two emergent subthemes were identified that cut 

across the primary themes: 

Epistemic Humility: Some participants expressed awareness of the 

limitations of procedural reasoning, emphasizing a need for 

structural insight: 

―When I hit a wall procedurally, I step back and think 

about the bigger structure—it‘s humbling but necessary.‖ 

Collaborative Visualization: A subset of participants described 

collaborative problem-solving as a means to externalize cognitive 

structures, such as drawing commutative diagrams or lattice 

representations, to scaffold reasoning. 

Frequency Counts: 

Emergent Subtheme 
Expert 

Mentions 

Novice 

Mentions 

Epistemic Humility 8 2 

Collaborative 

Visualization 
7 3 

Experts mentioned epistemic humility 8 times, compared to just 2 

mentions by novices. Epistemic humility refers to the recognition 

of the limits of one‘s knowledge and a willingness to revise beliefs 

or approaches based on new evidence or alternative viewpoints. 

Experts‘ higher frequency of this subtheme highlights a key 

characteristic of expert reasoning: openness to uncertainty and 

adaptability. Their readiness to acknowledge gaps in their 

understanding or adjust their strategies likely reflects a mature, 

reflective approach to complex problem-solving. This mindset 

fosters continuous learning and innovation, especially in abstract 

fields like algebra where problems can often have multiple 

pathways and interpretations. Novices‘ low mention frequency 

may reflect a lack of awareness or confidence in recognizing 

knowledge limitations. Novices may either overestimate their 

understanding or hesitate to express uncertainty, which can impede 

their learning and adaptation. 

Collaborative visualization was mentioned 7 times by experts and 

3 times by novices. This subtheme involves the use of shared 

visual representations (e.g., diagrams, sketches, or symbolic 

representations) to facilitate problem-solving in a group setting. 

Experts‘ more frequent references suggest that they recognize and 

utilize visual tools to co-construct understanding and support 

collective reasoning. Their ability to externalize and negotiate 

abstract concepts through collaborative visual aids contributes to 

clearer communication, deeper engagement, and more effective 

joint problem-solving. Novices, while less frequent in their 

mentions, do acknowledge the utility of visualization but may not 

yet fully appreciate its potential as a collaborative tool. They might 

rely more on individual reasoning or struggle to integrate visual 

representations effectively in group contexts. 

These emergent subthemes highlight not only cognitive but also 

social and affective dimensions of expert reasoning: Epistemic 

humility among experts fosters adaptive learning, critical 

reflection, and openness to new ideas—all essential for mastering 

abstract algebra. Collaborative visualization supports collective 

cognitive processes, enabling clearer articulation of complex 

concepts and fostering group problem-solving skills. 

Encourage epistemic humility by creating a classroom culture 

where uncertainty is normalized, and learners are encouraged to 

question, reflect, and revise. Techniques include open-ended 

problems, peer review, and reflection prompts. Promote 

collaborative visualization through group-based activities like 
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whiteboarding, collaborative mind-mapping, and dynamic visual 

tools (e.g., digital math platforms). These practices can help 

novices develop both visual reasoning skills and collaborative 

problem-solving abilities. 

5. Discussion 
The findings support the existence of specialized cognitive 

frameworks in abstract algebraic reasoning. The neurocognitive 

evidence aligns with the hypothesis of domain-specific modules 

facilitating symbolic manipulation. Eye-tracking data highlight the 

role of attentional strategies in managing cognitive load. The 

thematic insights emphasize the dynamic interplay between 

procedural and structural reasoning, suggesting a model of 

algebraic cognition that integrates symbolic schemas, hierarchical 

abstraction, and dual processing. 

The integration of neurocognitive, eye-tracking, and qualitative 

data provides a comprehensive view of the cognitive structures 

underlying abstract algebraic reasoning. The activation of the 

DLPFC and IPS aligns with their roles in working memory and 

symbolic processing, supporting the hypothesis of domain-specific 

cognitive modules. Eye-tracking patterns suggest that experts 

allocate visual attention more efficiently, focusing on structural 

elements critical to problem-solving. The thematic analysis 

underscores the importance of internalized symbolic schemas and 

the interplay between procedural and structural understanding. 

These findings have implications for educational practices, 

suggesting that fostering structural awareness and symbolic 

schema development may enhance proficiency in abstract algebra. 

The thematic findings deepen our understanding of how cognitive 

structures in abstract algebra are constructed and navigated. The 

prominence of symbolic schemas suggests that expertise involves 

the internalization of domain-specific representations, consistent 

with chunking theory (Chi et al., 1982). Hierarchical abstraction 

supports the notion of recursive reasoning levels, echoing Sfard‘s 

(1991) duality of process and object. The procedural-structural 

duality theme highlights the importance of integrating procedural 

fluency with structural understanding, aligning with Tall‘s (2004) 

concept of the proceptual nature of mathematical symbols. 

Moreover, epistemic humility and collaborative visualization 

provide novel insights, suggesting avenues for pedagogical 

interventions. By explicitly teaching students to step back from 

procedural walls and externalize cognitive structures through 

diagrams, educators may cultivate deeper algebraic reasoning 

skills. 

6. Conclusion 
This study advances our understanding of the cognitive structures 

underlying abstract algebra. The identification of domain-specific 

modules and reasoning strategies opens pathways for enhancing 

algebra education and developing targeted cognitive interventions. 

Future research should expand on these findings using longitudinal 

designs and diverse participant populations. 

This study advances our understanding of the cognitive structures 

underlying abstract algebra. The identification of domain-specific 

modules and reasoning strategies opens pathways for enhancing 

algebra education and developing targeted cognitive interventions. 

Future research should expand on these findings using longitudinal 

designs and diverse participant populations. 

 

7. Recommendations 
Based on the integrated findings from thematic analysis, 

neurocognitive data and eye-tracking metrics, several 

recommendations emerge to enhance the teaching and learning of 

abstract algebraic reasoning: 

7.1 Foster Symbolic Schema Development 

Educational practices should prioritize the explicit teaching of 

symbolic schemas. Instructors can: Introduce canonical structures 

(e.g., cyclic groups, rings) early in the curriculum. Encourage 

students to verbalize and diagram the relationships between 

symbols and their meanings. Use worked examples and contrasting 

cases to highlight how symbolic templates can guide problem-

solving. 

7.2 Promote Hierarchical Abstraction Skills 

To cultivate students‘ ability to move between levels of 

abstraction: Incorporate tasks that require transitioning from 

concrete examples to generalized concepts. Use scaffolding tools 

(e.g., number lines, modular arithmetic examples) to anchor 

understanding. Encourage metacognitive reflection on how 

concrete cases inform abstract reasoning. 

7.3 Balance Procedural Fluency and Structural 

Understanding 

Instructional strategies should balance computational practice with 

structural insight: Design tasks that explicitly link procedures to 

properties (e.g., asking ―Why does this procedure work?‖). 

Implement problem-based learning that requires both symbolic 

manipulation and conceptual justification. Incorporate 

collaborative activities where students must explain their reasoning 

to peers. 

7.4 Support Epistemic Humility and Visualization 

Recognizing the role of epistemic humility and collaborative 

visualization: Create a classroom culture that normalizes 

acknowledging gaps in understanding and seeking structural 

explanations. Use visualization tools such as lattice diagrams, 

group tables, and concept maps to externalize reasoning. Facilitate 

group work and discussions, enabling collaborative construction of 

visual representations. 

7.5 Implications for Curriculum Design 

Curriculum designers should: Integrate visual and conceptual 

learning tools into abstract algebra courses. Sequence topics to 

build from concrete to abstract, mirroring the natural progression 

of cognitive development identified in the study. Include 

assessments that measure both procedural accuracy and structural 

insight, ensuring a comprehensive evaluation of reasoning skills. 

7.6 Directions for Future Research 

Future studies could: Expand participant diversity, including 

undergraduates, advanced learners, and mathematicians from 

varied cultural contexts. Investigate longitudinal development of 

cognitive structures in abstract algebra, tracking changes over time. 

Explore the role of digital tools and AI, such as intelligent tutoring 

systems, in supporting algebraic reasoning. Combine neuroimaging 

with real-time task analysis to capture dynamic cognitive processes 

during problem-solving. 
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