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Abstract 

The concept of process capability, rooted in statistical process control, emerged as a response to the growing need for systematic 

approaches to quality management. As industries evolve and consumer demands become more stringent, the need for effective tools 

to assess and improve process capability becomes increasingly apparent. Hence, this study delves into the context surrounding 

capability indices and the methodologies employed in evaluating industrial process capability when process data is not normal. In 

real life, industrial processes are not normally distributed and may contain outliers, thereby; using traditional process capability 

may leads to wrong conclusions. The aim of this study is to comprehensively evaluate and compare the Clement’s, percentile, and 

Z-score approaches for assessing industrial process capability. Through empirical analysis and theoretical examination, the study 

would analyze and compare the practical applicability of the Clement’s, Percentile, and Z-score approaches using two real-life 

industrial process data. The empirical evaluation of the methods would be conducted to assess their effectiveness and reliability. 

The appropriate process capability approach to the two industrial processes would be recommended. 

Keywords: Clement method, Non-normal data, Percentile method, Probability Distribution, Process Capability Index. 
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1. Introduction 
In the ever-changing world of industrial processes, efficiency and 

quality assurance are critical. Capability indices are essential 

instruments for evaluating the efficacy and potential of industrial 

processes (Khan et al., 2023). The essence of capability indices lies 

in their ability to provide quantitative measures of a process's 

ability to meet specified requirements (Jufri, et, al, 2019).  These 

indices offer insights into process performance, enabling 

organizations to identify areas for improvement, optimize 

resources, and ultimately enhance product quality. Process 

capability based on normal distribution refers to the ability of an 

industrial process to consistently meet specified quality standards, 

assuming that the underlying data follows a normal distribution. 

Capability indices such as Cp and Cpk are sensitive to departures 

from normality and may provide misleading results if the 

underlying data distribution is non-normal. Hence, caution must be 

taken in interpreting capability indices in such cases and there may 

be need to explore alternative approaches for assessing process 

performance that are reliable and accurate. 

However, achieving and sustaining optimal process capability 

poses significant challenges, necessitating the utilization of robust 

analytical tools and methodologies when dealing with non-normal 

data. Capability indices such as Cp and Cpk are sensitive to 

departures from normality and may provide misleading results if 

the underlying data distribution is non-normal. Despite the 

availability of various capability indices and assessment methods, 

organizations often face difficulties in selecting the most suitable 

approach for their specific processes and objectives. This challenge 

is compounded by factors such as data distribution characteristics, 

process complexity, and organizational constraints. Without a clear 

understanding of which method best aligns with their needs and 

circumstances, organizations may struggle to accurately assess 

process capability and implement targeted improvement initiatives.  

Through the years, various methodologies have been developed to 

calculate capability indices when applied to non-normal data 

distributions, each offering unique perspectives and analytical 

approaches. Ahmad et al. (2008) reviewed the performances of the 

Clements (1989) non-normal percentile method, the Burr-based 

percentile method, and the Box-Cox method for non-normal cases. 

They conducted a simulation study using Weibull, Gamma, and 

Lognormal distributions to evaluate these methods. Albing (2009) 

proposed a class of capability indices useful when the quality 

characteristic of interest follows a skewed, zero-bound distribution 

with a long tail toward larger values, and an upper specification 

limit with a pre-specified target value (T = 0). The study focused 

on process capability indices for the Weibull distribution. Ahmed 

(2010) discussed the estimation of commonly used PCIs, for non-

normal data using the characteristics of the Weibull distribution. 

Quantiles were estimated via the probability plotting technique, 

and control limits were obtained to determine if the process was in 

statistical control. Percentage points of the fitted distribution were 

used under the assumption of Weibull distribution. Kantam et al. 

(2010) studied the point estimates of process capability indices 

suggested by Clements through simulation when the underlying 

distribution is the Half Logistic distribution.  

Dianda, et al. (2016) conducted a comparative study of several 

multivariate capability indices, both original and modified, to 

evaluate their effectiveness in indicating the actual status of a 

process concerning its specifications. The study considers various 

scenarios, including different distributions, numbers of variables, 

and correlation levels among them. Safdar et al. (2019) proposed a 

method to estimate four basic indices for non-normal processes 

using the Johnson system, which comprises three types that 

translate a continuous non-normal distribution to normal. Taib and 

Alani (2021) discussed four methods for evaluating non-normal 

PCIs, including Box-Cox power transformation, weighted variance 

method, Clements' method, and Darling-Anderson goodness of fit 

test. The results showed that the process is stable and under 

statistical control but not capable based on the value of the PCIs, 

which did not exceed 65%. Wang et al. (2021) proposed modified 

Clements' PCIs based on a model selection approach, named robust 

PCIs method, for the location-scale distribution (LSD) family to 

evaluate the process capability of a production process. Alevizakos 

(2023) computed the classical indices for discrete data following 

Poisson, binomial or negative binomial distribution using various 

transformation techniques. 

In this study, we aim to delve into the background and intricacies 

of capability indices, with a particular focus on the Clement 

method, and percentile method. By examining their theoretical 

foundations, practical applications, and comparative advantages, 

we seek to provide insights that can inform decision-making and 

drive continuous improvement initiatives in industrial settings. 

2. Methodology 
The study adopts a comparative research design to analyze and 

compare the effectiveness of Percentile Method, and Clement's 

Method. This design facilitates a systematic evaluation of each 

method's applicability and performance in the context of industrial 

manufacturing. The data for the study consists of secondary data 

obtained from two manufacturing industries. Exploratory data 

analyses were conducted to investigate patterns and check the 

assumptions underlying Clement's method to determine the 

appropriate distribution to use. Control charts were plotted for the 

data, and analyses were performed using R Studio.  

2.1 Clement's Percentile PCI Method 

Clements (1989) utilized the Pearson curves to provide better 

estimates of the relevant quantiles. Non-normal Pearsonian 

distributions include a wide class of populations with non-normal 

characteristics. This method uses Pearson curves to provide more 

accurate estimates of         ,       (median), and         . 

Modified Cp and Cpk do not require transformation of the data and 

they have straightforward meaning which makes them easy to 

understand. 

Clements’ estimator for    and for     are respectively  
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Notably,          is the 0.99865 quantile,          is the 0.00135 

quantile, and       is the 0.50 quantile calculated with the 

knowledge of skewness, kurtosis, mean, and variance from the 

sample data for a non-normal Personian distribution. 

 

 



Copyright © ISRG Publishers. All rights Reserved. 

DOI: 10.5281/zenodo.15004174 
3 

 

2.2 Percentile-Based Approach 

The percentile method replaces the mean in the standard capability 

formulas with the median of the fitted distribution and the 6  range 

of values with the corresponding percentile range.  

Then Percentile method capability indices are defined as follows: 
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where   is the           percentile of the fitted distribution.  

3. Results and Discussion 
This section presents the results of the analysis conducted on the 

two datasets used for the research work, the weight of cement and 

the sugar level used in the production of soft drink. The primary 

objective is to evaluate process capability indices using the 

Clement and Percentile methods and to assess the goodness-of-fit 

for different statistical distributions applied to these datasets. 

Table1 Descriptive Statistics for weight of Cement 

Truck Min Max Mean Std error 

Truck1 49.15 50.10 49.70 0.0719 

Truck2 49.03 49.99 49.51 0.0653 

 Truck3 49.08 50.00 49.60 0.0594 

Truck4 49.07 50.00 49.57 0.0708 

Truck5 49.09 50.00 49.56 0.0614 

Truck6 49.08 50.05 49.44 0.0679 

Truck7 49.03 49.98 49.54 0.0654 

Truck8 49.18 49.96 49.60 0.0527 

Truck9 49.12 50.00 49.63 0.0660 

Truck10 49.92 50.05 49.53 0.0704 

The descriptive statistics for the weight of cement across the trucks 

and processes in Table 1 indicate a high degree of consistency. The 

weights range from about 49.03 to 50.10, with average weights 

close to 49.6. For truck 1, the table above shows that the cement 

weight ranges from 49.15 to 50.10, with an average of 49.70. The 

standard error is 0.0719, indicating a reasonably precise estimate of 

the mean. Truck 8 weights range from 49.18 to 49.96, with an 

average of 49.60. The standard error is 0.0527, indicating high 

precision. Also, truck 10 weight ranges from 49.92 to 50.05, with 

an average of 49.53. The standard error is 0.0704, similar to other 

trucks in terms of precision. 

Table 2: Descriptive Statistics for Sugar Level in Coca-Cola 

Process 

Truck Min Max Mean 

Process1 35.02 35.32 35.18 

Process2 35.01 35.31 35.17 

Process3 35.02 35.31 35.18 

Process4 35.00 35.31 35.16 

Process5 35.00 35.30 35.16 

Process6 35.02 35.31 35.19 

Table 2 shows that the Sugar level ranges from 35.00 to 35.32, 

with means around 35.16 to 35.19. Process 1 has a weight range of 

35.02 to 35.32 and an average of 35.18, the narrow range shows 

stable and consistent sugar level control across processes. Also, the 

Process 5 sugar level weight ranges between 35.00 and 35.30, with 

an average of 35.16. The range is tight, suggesting consistent 

measurement. Process 6 sugar level ranges from 35.02 to 35.31, 

with a mean of 35.19. 

The data was tested for normality using the Shapiro-Wilk test. The 

Shapiro-Wilk test was performed on both data to check if the data 

is normally distributed. 

Table 3 for Cement and Coca-Cola Data Sets 

Shapiro-

Wilktest 

W 
P-value NormalityStatus 

Cement 0.96044 0.0000221 NotNormal 

CocaCola 0.9987 0.0000001 NotNormal 

The result from the Shapiro-Wilk normality test in Table 3 shows 

that the data for both Cement and Coca-Cola do not follow a 

normal distribution as shown in figure1 and figure 2. Therefore, 

neither set of data is normally distributed, which means that 

normality-based statistical methods may not be suitable without 

first transforming the data or using non-parametric approaches. To 

address this, various non-normal distributions such as Weibull, 

Gamma, Beta, Log-Normal, and Exponential distributions were 

considered as potential candidates to model the data more 

accurately. These distributions are often used in industrial and 

process capability analyses when the data deviates from normality. 
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Figure 1 

 

   

 

Figure 2 

The distributions were fitted to both datasets and the fit of each distribution was evaluated using Log-Likelihood, Akaike Information Criterion 

(AIC), and Bayesian Information Criterion (BIC). The metrics for each distribution fitted to the dataset are given below. 

Table 4 : Distribution Fit Metrics for Cement Dataset 

Distribution Log-Likelihood AIC BIC 

Weibull -41.70 87.39 93.99 

Gamma -38.39 80.78 87.38 

Log-Normal -38.08 80.16 86.76 

Exponential -980.67 1963.34 1966.64 

The Log-Normal distribution exhibited the lowest AIC (80.16) and 

BIC (86.76) values, indicating the best fit for cement data. The 

Exponential distribution, however, was a poor fit with extremely 

high AIC (1963.34) and BIC (1966.64) values. Figure 3 presents 

the bar charts of the distribution fit metrics for cement data set. 

 

Figure 3: Plot of AIC and BIC of the fitted distribution for Cement 

Data 



Copyright © ISRG Publishers. All rights Reserved. 

DOI: 10.5281/zenodo.15004174 
5 

 

Table 5: Distribution Fit Metrics for Coca-Cola Data 

Distribution Log-Likelihood AIC BIC 

Weibull 167.55 -331.11 -324.72 

Gamma 164.71 -325.42 -319.03 

Log-Normal 166.35 -328.71 -322.32 

Exponential -820.85 1643.69 1646.89 

 

Figure 4: Ploto fAIC and BIC of the fitted distribution for Coca-

Cola Data 

Table 5 and Figure 4 reveal that the Weibull distribution is the best 

fit for modelling sugar levels in the Coca-Cola process data. It 

achieved the highest Log-Likelihood (167.55) and the lowest AIC 

(-331.11) and BIC (-324.72) values, indicating the best balance 

between model accuracy and complexity. While the Log-Normal 

distribution also showed strong performance with a high Log-

Likelihood (166.35) and relatively low AIC (-328.71) and BIC (-

322.32), the Weibull distribution’s metrics were slightly superior. 

The Gamma distribution, with its lower Log-Likelihood (164.71) 

and higher AIC (-325.42) and BIC (-319.03), proved to be a less 

suitable fit, while the Exponential distribution demonstrated a poor 

fit with a very low Log-Likelihood (-820.85) and extremely high 

AIC (1643.69) and BIC (1646.89) values. 

The Weibull distribution, offering the most accurate representation 

of the data, was selected to derive parameters for the Percentile 

method in further analysis. Additionally, various Pearson family 

distributions—Types I, III, VI, and VII—were fitted to both 

datasets for calculating process capability indices (Cp and Cpk) 

using Clement’s method. Each distribution was evaluated using 

AIC and BIC values to determine the best fit, ensuring that the 

most reliable distribution was selected for assessing process 

capability across both datasets. 

Table 6: Pearson family of Distribution Fit Metrics for Cement 

Dataset 

Distribution AIC BIC 

Pearson Type I 87.79346 104.28505 

Pearson Type III 82.06459 91.95954 

Pearson Type VI 106.22999 122.72158 

Pearson Type VII 104.58992 117.78319 

For the Table 6, various Pearson family distributions were fitted 

and compared using AIC and BIC values to identify the best fit. 

Pearson Type III shows the lowest AIC (82.06) and BIC (91.96) 

values, indicating that it is the most suitable distribution for 

modeling the Cement data. Figure 5 visually supports this 

conclusion, showing that Pearson Type III consistently has the 

lowest values compared to the other distributions. Thus, Pearson 

Type III is identified as the best choice for calculating process 

capability indices (Cp and Cpk) using the Clement’s method. 

 

Figure 5: Plot of AIC and BIC of the fitted Pearson Family of 

distribution for Cement Dataset 

Table 7: Pearson family of Distribution Fit Metrics for Cement 

Dataset 

Distribution AIC BIC 

Pearson Type I -324.6874 -308.7227 

Pearson Type III -326.7907 -317.2118 

Pearson Type VI -299.7083 -283.7435 

Pearson Type VII -302.9088 -290.1370 

From Table 7, Pearson Type III once again provides the best fit, as 

indicated by its lowest AIC (-326.79) and BIC (-317.21) values. 

This means that Pearson Type III offers the best balance between 

model accuracy and simplicity for the Coca-Cola data. Figure 6 

reinforces this observation, where Pearson Type III has the lowest 

plotted AIC and BIC values among the distributions tested. 

 

Figure 6: Plot of AIC and BIC of the fitted Pearson Family of 

distribution for Coca-Cola Dataset. 

In contrast, Pearson Types VI and VII have higher AIC and BIC 

values (AIC: -299.71 and -302.91), meaning they are less suitable 

for the data. Hence, Pearson Type III is the most appropriate 

distribution for modeling the data and calculating process 

capability indices using the percentile method. 

3.1 Process Capability Indices 

3.1.1Comparison of Process Capability Indices Cement 

Dataset 
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Table 8: Comparisons of Process Capability Indices across    

               Different Methods 

CPI DIRECT

METHOD 

LOG NORMAL 

PERCENTILE 

METHOD 

PEARSONTYPE

III 

CLEMENT’S 

METHOD 

Cp 0.6703 0.6718 0.5794 

Cpk 0.6039 0.6009 0.5471 

Cpm 0.6574 0.6591 0.5682 

Cpmk 0.5922 0.5948 0.5365 

Table 8 shows the process capability indices (Cp, Cpk, Cpm, and 

Cpmk) for three methods: Direct, Log-Normal Percentile, and 

Pearson Type III Clement Method. The process capability indices 

(Cp, Cpk, Cpm, and Cpmk) have the following standards: Cp and 

Cpm values above 1.0 indicate a capable process, with values 

above 1.33 considered good; Cpk and Cpmk values above 1.0 

imply that the process is centered and well-aligned with targets, 

with higher values indicating better performance. Based on Table 

8, the Direct Method (Cp: 0.6703, Cpk: 0.6039, Cpm: 0.6574, 

Cpmk: 0.5922) and Log Normal Percentile Method (Cp: 0.6718, 

Cpk: 0.6009, Cpm: 0.6591, Cpmk: 0.5948) both show similar 

results indicating good process capability and precision; however, 

they fall below the desired thresholds of 1.0, suggesting inadequate 

process capability. Also, the Pearson Type III Clement Method 

(Cp: 0.5794, Cpk: 0.5471, Cpm: 0.5682, Cpmk: 0.5365) 

consistently yields lower values, indicating poorer performance 

across all indices. Overall, while the Direct and Log Normal 

methods provide consistent and reasonable results, all methods 

indicate that the process does not meet the standards for capability 

or capable. 

3.1.2 Comparison of Process Capability Indices Coca-Cola 

Dataset 

Table 9: Comparison of Process Capability Indices across  

              Different Methods 

CPI DIRECT 

METHOD 

WEIBULLPERCENT

ILEMETHOD 

PEARSONT

YPEIII 

CLEMENT’S 

METHOD 

Cp 0.5540 0.4628 0.5367 

Cpk 0.5113 0.3734 0.4767 

Cpm 0.5495 0.4487 0.5282 

Cpmk 0.5071 0.3670 0.4691 

Table 9 presents a comparison of process capability indices (CPI) 

across three different methods: Direct, Weibull Percentile, and 

Pearson Type III Clement Method. The indices compared are Cp, 

Cpk, Cpm, and Cpmk, which are used to evaluate the capability of 

a process to meet specified limits. For Cp, the Direct method 

(0.5540) and Pearson Type III method (0.5367) demonstrate 

moderate process potential, while the Weibull Percentile method 

(0.4628) shows lower capability. In terms of Cpk, the Direct 

method (0.5113) and Pearson Type III method (0.4767) indicate 

moderate actual process capability, whereas the Weibull Percentile 

method (0.3734) reflects lower capability to meet specifications. 

For Cpm, both the Direct method (0.5495) and Pearson Type III 

method (0.5282) show moderate precision, with the Weibull 

Percentile method (0.4487) indicating slightly lower precision. 

Finally, for Cpmk, the Direct method (0.5071) and Pearson Type 

III method (0.4691) indicate moderate capability considering 

deviation from the target, while the Weibull Percentile method 

(0.3670) reflects lower capability. 

The Pearson Type III methods provide more reliable and consistent 

estimates of process capability compared to the Weibull Percentile 

method, which shows consistently lower values across all indices. 

Given that the data is non-normal, the best method for this dataset 

is the Pearson Type III method. Although this method does not 

meet the capability standards (as indicated by its values being 

below 1.0 for the Cp index), it still represents the best fit for the 

data because the values are close to the standard. 

4. Conclusion 
This research evaluated process capability indices for industrial 

processes using two datasets: cement weight and sugar levels in 

Coca-Cola production. The study applied Clement and Percentile 

methods to measure indices such as Cp, Cpk, Cpm, and Cpmk, 

while normality was tested using the Shapiro-Wilk test, which 

confirmed non-normal distributions in both datasets. Various 

probability distributions-Gamma, Log-Normal, Weibull, and 

Exponential for the Percentile method, and Pearson Type I-IV for 

Clement’s method-were tested for the best fit using Akaike 

Information Criterion (AIC) and Bayesian Information Criterion 

(BIC). 

For the cement dataset, weights ranged from 49.03 kg to 50.10 kg, 

with a mean of 49.6 kg. The Log-Normal distribution best fit the 

data using the Percentile method, while Pearson Type III was most 

suitable for Clement’s method. Although none of the methods 

achieved the ideal process capability index (CPI) value of 1.0, the 

Log-Normal Percentile method produced values closer to this 

benchmark, indicating better process precision. In contrast, the 

Pearson Type III Clement method consistently showed lower index 

values, suggesting it was less effective in evaluating process 

capability for cement weight. 

In Coca-Cola sugar levels, which ranged from 35.00 mg/L to 35.32 

mg/L (mean: 35.16 mg/L), the Weibull distribution provided the 

best fit for the Percentile method, while Pearson Type III was the 

best match for Clement’s method. The Pearson Type III Clement 

method yielded more consistent and reliable CPI estimates than the 

Weibull Percentile method. Despite none of the methods meeting 

the ideal CPI standard, the study recommends using non-normal 

distribution-based methods (e.g., Pearson Type III, Weibull, Log-

Normal) to improve assessment accuracy for industrial process 

capability. 
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