
Copyright © ISRG Publishers. All rights Reserved. 

DOI: 10.5281/zenodo.14800646 
5 

 

 

 
 

 

 
 

 

 

  

ISRG PUBLISHERS 
Abbreviated Key Title: isrg j. multidiscip. Stud. 

ISSN: 2584-0452 (Online) 

Journal homepage: https://isrgpublishers.com/isrgjms/  
Volume – III, Issue - II (February) 2025 

Frequency: Monthly 

 

Performance of Beta Ridge Regression Estimator in Addressing Multicollinearity 

within Beta Distribution 

 Ratna Arum Sari
1
, Netti Herawati

2*
, Misgiyati

3
, Khoirin Nisa

4
 

1, 2, 3, 4 
Department of Mathematics, University of Lampung, Lampung, Indonesia  

| Received: 27.01.2025 | Accepted: 03.02.2025 | Published: 04.02.2025 

*Corresponding author: Netti Herawati 

Department of Mathematics, University of Lampung, Lampung, Indonesia  

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

1. INTRODUCTION 
The beta regression model is a model that provides accurate and 

efficient parameter estimators compared to the ordinary least 

squares method, when the response variable is not symmetrically 

distributed, or when heteroscedasticity problems occur [1]. Beta 

regression models are used to model data that is limited to the 

interval (0,1) generally such as ratios or percentages.  However,  

 

 

 

 

 

 

 

 

 

 

 

 

multicollinearity problems often arise in data analysis involving 

highly correlated independent variables. The occurrence of 

multicollinearity causes the least squares estimator to have a large 

variance [2].  

Abstract 

Beta Ridge Regression (BRR) is a ridge method applied in the beta regression model used to overcome the problem of 

multicollinearity, which is a condition in which the independent variables in the regression model have a high correlation.  This 

problem can cause parameter estimates to be unstable and less accurate.  This study aims to determine the performance of BRR 

estimator in overcoming multicollinearity in simulated data with small sample size. The analysis is done by comparing the 

estimation results based on the Mean Squared Error (MSE) and Mean Absolute Error (MAE) values.  The results show that the 

proposed BRR estimator has superior performance compared to the Maximum Likelihood Estimation (MLE) method, by producing 

lower MSE and MAE values than MLE. 
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In an attempt to overcome multicollinearity, beta ridge regression 

(BRR) has been proposed as an alternative method. BRR 

incorporates the ridge regression technique into the beta regression 

model by adding a ridge parameter     to reduce the variance of 

the  

estimate and the impact of high correlation between independent 

variables. Previous research by Abonazel and Taha [3] and Qasim, 

et al. [4] showed that BRR performed better than the MLE method 

in overcoming multicollinearity.  

This study aims to evaluate the performance of BRR in 

overcoming multicollinearity in simulated data with small sample 

sizes. In addition, this study also compares several ridge 

parameters                  to determine the parameter value 

that provides the best results based on MSE and MAE criteria. 

2. LITERATURE REVIEW 
2.1 Beta Distribution 

The beta distribution is one of the continuous probability 

distributions that is often used in various statistical applications, 

especially as a model for random variables limited to the interval 

0-1 and is determined by two positive parameters, namely   and  . 

These two parameters act as exponents of the random variable, 

which affect the shape of the beta distribution [5]. The probability 

density function of the beta distribution is expressed as follows: 

         
      

        
             ,  

where      ,      is the gamma function,   and   are the beta 

distribution parameters. 

In the beta distribution, the mean and variance with parameters   

and   are as follows: 

     
 

   
 &         
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2.2 Beta Regression Model 

The beta regression model is a statistical method designed to model 

the relationship between an independent variable and a dependent 

variable, where the dependent variable follows a beta distribution.  

The beta regression model is a statistical approach used to analyze 

the relationship between independent variables and dependent 

variables, where the dependent variable follows a beta distribution. 

This model is often used in the analysis of ratio or percentage data, 

such as success rates, proportions, and probabilities, because of its 

flexibility in handling various forms of data distribution, both 

symmetrical and asymmetrical. Beta regression is commonly 

applied in various fields, including economic, social, and other 

fields that involve analyzing data bounded on the interval (0,1). 

The beta regression model was first introduced by Ferrari and 

Cribari-Neto. Ferrari and Cribari-Neto [6] defined a 

parameterization to develop a beta distributed response regression 

model based on the initial equation of the beta regression density 

function. By supposing that    
 

   
 and       so that 

     and              . After the 

reparameterization, the function for the random variable   that 

follows the beta distribution is as follows: 

         
    

            
                    

Where                           is a gamma function, 

and   is a parameter.   is a parameter written by Bayer and 

Cribari-Neto [7] which is defined as follows: 

  
    

  
. 

Therefore, the mean and variance of   are expressed in the new 

parameterization as follows: 

           &            
      

   
. 

In beta regression, the relationship between the mean     and the 

covariate    is expressed through a logit link function. The logit 

link function is as follows: 

        (
 

   
).  

Therefore, the beta regression model with a logit link function can 

be written as: 

        
      

   (  
  )

     (  
  )

. 

In estimating parameters, namely by using the MLE method by 

maximizing the likelihood function. MLE is a technique used to 

estimate the parameters of a population distribution by choosing 

parameter values that maximize the likelihood function of the 

observed data [8].  The log-likelihood function in the beta 

regression model is: 

       ∑                 (     )   
           

          (            )           .   

Furthermore, to obtain the value of the maximum likelihood 

estimator  ̂ where the coefficient vector uses the maximum 

likelihood method which is estimated by performing the first 

derivative of the log-likelihood function on   or called the score 

function. Where    depends on   through the log-likelihood 

function. Equation The score function is as follows: 

     
          

  
  

             ∑ [(        )   (        )                  
   

   ].   

Because the above equation is nonlinear and cannot be solved 

analytically. The solution of      can be found through the 

iterative reweighted least square (IRLS) algorithm derived from the 

application of the Newton Raphson or Fisher Scoring method. The 

general Newton-Raphson equation for finding the roots of the log-

likelihood is: 

        {     }        ,  

then obtained as follows: 

           
           

            .   

After obtaining the simplification, the form of the logarithmic 

estimate is then associated with IRLS as follows: 

      
          

     , 

where        (
   

        
), and             

     

        
. 

It will be concluded that     converges to  ̂    when    , so 

the final form of MLE is: 
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 ̂    (   ̂ )
  

   ̂ . 

The variance of MLE is: 

 ( ̂   )             . 

The MSE of MLE is: 

   ( ̂   )   ( ̂     )
 
( ̂     ). 

Since  ̂    is an unbiased estimator, meaning    ̂      , the 

MSE only depends on the variance (trace) which is as follows: 

   ( ̂   )          {         } 

           ∑
 

  

 

   

 
 

 

where      is the  th eigenvalue in the      matrix. 

2.3 Beta Ridge Regression Estimator 

This section present the BRR method for beta regression model, 

which is a generalization of Hoerl and Kennard [9]. In the BRR 

method, the maximum likelihood principle is used to estimate the 

parameter estimates with the minimum weight sum of square 

(WSSE). Suppose we will choose an arbitrary estimator  ̂ other 

than  ̂   , where  ̂ is a vector of   then the WSSE of this 

estimator can be defined as follows: 

   (   ̂)
 
    ̂  

       

(    ̂   )
 
(    ̂   )           ( ̂   ̂   )

 
       ̂  

 ̂     

             ( ̂)  

where      is the minimum value, and  ( ̂)    is a fixed 

increment that increases the Weight Sum of Square when the  ̂    

estimator is replaced by the  ̂ estimator.  According to Hoerl and 

Kennard [9], to obtain parameter estimates in beta ridge regression, 

namely by minimizing the lagrange function     using  ̂  ̂ with 

( ̂   ̂   )
 
      ̂   ̂        which will then be made in 

lagrangian form as: 

            (   ̂)
 
    ̂  

   ̂   (
 

 
) {( ̂    ̂   )

 
    ( ̂         ̂   )    }   

where (
 

 
) is the multiple lagrangian and    is the sum of squares 

error. 

Then the lagrangian equation is derived against  ̂ and the result is 

equalized to zero, as follows: 

  

  ̂
   ̂  

{     ( ̂   ̂   )}

 
     

In the above equation  ̂ is considered as the beta ridge regression 

( ̂   ), so the final equation of the beta ridge regression estimator 

can be defined as follows: 

 ̂                    ̂      

where   is the ridge parameter and   is the identity matrix of order 

   . 

2.4 Choosing the Ridge Parameter   

In beta ridge regression to handle the multicollinearity problem, a 

ridge parameter called ridge parameter   is required. Taken from 

the research of Alkhamisi, et al [10] and Kibria [11], we can 

modify the estimation of   based on Abonazel and Taha [3] for the 

beta regression model as follows: 

1.        (
 

  ̂ 
 )              

2.           (
 

  ̂ 
 )             

3.         (
 

  ̂ 
 ) 

4.    (
    

  ̂   
 ) 

5.    (
    

  ̂   
 ) 

With      the maximum eigenvalues of the      matrix and 

     is the minimum eigenvalues of the      matrix,   
  is the 

value of    ̂   , where   is the eigenvector element of the 

       matrix. 

3. METHODOLOGY 
The data used in this study are simulated data containing 

multicollinearity generated using RStudio Software.  The 

simulation data is data generated with 6 independent variables (p = 

6) with a correlation level between independent variables of 0.6 

and 0.99                and the number of samples used is     

10, 20, 30, 50, and 75 with repetition        times and the 

parameter   used is (    1,2,3). 

To obtain multicollinearity data on each data set     is generated 

using Monte Carlo simulation based on McDonald and Galarneau 

[12] with the following equation: 

   √                  

where          ;  

                           . 

In this study, the model estimation performance is analyzed using 

the MSE and MAE criteria MSE and MAE values can be 

calculated as follows: 
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  ̂     

4. RESULT AND DISCUSSION 
To see the performance of Beta Ridge Regression, the first step 

that must be done is to calculate the VIF value for the partial 

correlation between the independent variables and the full 

correlation. This correlation value is needed to see if there is a 

multicollinearity problem between the independent variables. The 

VIF results are shown in Table 1 and Table 2. 
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Table 1. VIF Value       

  
      

                  

10 5.24 123.1 8.78 82.24 1.96 58.29 

20 2.40 52.46 2.78 1.70 54.39 64.72 

30 1.86 3.28 43.79 75.54 37.58 1.74 

50 49.40 1.38 27.36 1.75 38.57 1.67 

75 32.82 42.81 38.41 1.73 1.43 1.52 

Table 2. VIF Value        

  
       

                  

10 212.6 163.3 222.3 266.9 291.8 
101.

2 

20 30.35 28.02 55.74 30.47 29.50 
42.3

0 

30 51.02 18.93 26.73 34.79 36.32 
43.2

0 

50 50.61 44.76 67.28 41.73 42.26 
43.5

3 

75 36.41 36.76 41.17 33.47 29.23 
35.5

6 

Table 1 shows that there is a partial correlation between the 

independent variables indicated by the VIF value > 10 for       

with                 .  In addition the VIF result at        

for                  is displayed in Table 2. Table 2  shows 

that there is a full correlation between independent variables. Both 

of these indicate that if VIF >10 between  independent variables, it 

can be believed that multicollinearity is presence. 

Next is to calculate the MSE values for MLE and BRR at    

                and        &      to find which one is better 

at handling the multicollinearity   present in the model. The results 

of the analysis can be seen in Table 3 and Table 4. 

Table 3. MSE Value       

  
       

MLE                

    

10 85.12 0.307 0.506 0.470 0.212 77.93 

20 2.003 0.406 0.609 0.509 0.245 0.310 

30 1.021 0.498 0.795 0.704 0.295 0.241 

50 0.757 0.649 0.723 0.715 0.481 0.300 

75 0.624 0.581 0.614 0.607 0.573 0.347 

    

10 85.12 0.555 0.801 0.740 0.312 81.42 

20 2.003 0.590 0.719 0.734 0.244 0.558 

30 1.021 0.730 0.974 0.895 0.249 0.264 

50 0.757 0.724 0.748 0.745 0.400 0.307 

75 0.624 0.612 0.621 0.619 0.485 0.340 

    

10 85.12 0.721 1.157 1.039 0.383 82.62 

20 2.003 0.766 0.950 0.971 0.228 0.633 

30 1.021 0.829 0.987 0.957 0.229 0.225 

50 0.757 0.742 0.753 0.752 0.366 0.320 

75 0.624 0.618 0.618 0.623 0.666 0.445 

Table 4. MSE Value        

  
       

MLE                

    

10 139.4 0.050 0.259 0.151 0.011 137.8 

20 5.847 0.498 2.208 1.247 0.384 1.809 

30 0.902 0.467 0.865 0.675 0.428 0.320 

50 1.656 0.892 1.098 1.108 0.541 0.414 

75 1.105 0.749 1.099 0.977 0.445 0.342 

    

10 139.4 0.113 10.43 1.725 0.014 72.49 

20 5.847 1.216 3.804 2.849 0.382 0.638 

30 0.902 0.680 0.844 0.816 0.393 0.339 

50 1.656 1.097 1.512 1.436 0.446 0.613 

75 1.105 0.956 1.103 1.064 0.394 0.342 

    

10 139.4 1.424 9.156 6.393 0.013 6.507 

20 5.847 1.802 5.262 3.865 0.396 0.482 

30 0.902 0.776 0.873 0.859 0.369 0.339 

50 1.656 1.209 1.640 1.542 0.423 0.612 

75 1.105 1.028 1.104 1.085 0.376 0.342 

In Table 3 and Table 4, it can be seen that the MSE of the BRR is 

smaller than MLE for all ridge parameters used. If we look in more 

detail at Table 3 and Table 4, ridge parameters    and    have a 

smaller MSE than ridge parameters         . 

In addition, MAE value is also evaluated to see the performance of 

the model. The MAE values of the simulation results are shown in 

Table 5 and Table 6. 

Table 5. MAE Value       

  
       

MLE                

    

10 6.725 0.511 0.604 0.577 0.443 6.412 
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20 1.047 0.525 0.538 0.536 0.486 0.489 

30 0.762 0.502 0.668 0.624 0.539 0.439 

50 0.772 0.714 0.754 0.750 0.692 0.533 

75 0.713 0.683 0.706 0.702 0.606 0.586 

    

10 6.725 0.647 0.845 0.802 0.513 6.564 

20 1.047 0.538 0.554 0.562 0.485 0.538 

30 0.762 0.637 0.744 0.712 0.492 0.509 

50 0.772 0.755 0.767 0.766 0.631 0.522 

75 0.713 0.704 0.711 0.710 0.695 0.572 

    

10 6.725 0.787 1.027 0.975 0.547 6.617 

20 1.047 0.573 0.667 0.677 0.465 0.539 

30 0.762 0.683 0.749 0.737 0.466 0.448 

50 0.772 0.764 0.770 0.769 0.604 0.518 

75 0.713 0.709 0.712 0.711 0.666 0.568 

Table 6. MAE Value        

  
       

MLE                

    

10 9.946 0.177 0.365 0.282 0.101 9.855 

20 2.140 0.624 1.364 0.990 0.616 1.225 

30 0.772 0.625 0.760 0.713 0.654 0.562 

50 1.062 0.850 0.919 0.922 0.735 0.636 

75 0.775 0.593 0.772 0.701 0.667 0.584 

    

10 9.946 0.247 2.308 0.942 0.103 6.169 

20 2.140 0.971 1,784 1,550 0.610 0.725 

30 0.772 0.715 0.756 0.750 0.626 0.582 

50 1.062 0.920 1.029 1.011 0.667 0.718 

75 0.775 0.688 0.774 0.752 0.628 0.584 

    

10 9.946 0.856 2.162 1.808 0.103 1.824 

20 2.140 1.211 2.053 1.796 0.607 0.615 

30 0.772 0.740 0.762 0.759 0.607 0.582 

50 1.062 0.953 1.058 1.037 0.650 0.718 

75 0.775 0.731 0.775 0.764 0.613 0.584 

From Table 5 and Table 6, in can be seen that the MAE value of 

BRR is smaller than MLE for all ridge parameters used. The ridge 

parameters    and    have smaller MAE values than the ridge 

parameters         . 

These results indicate that the BRR estimator with ridge parameter 

               has superior performance and is more reliable than 

the MLE in handling multicollinearity problems. Among the five 

proposed parameter ridge  , parameter ridge    and    provide the 

best estimation compared to ridge parameters        dan     in 

handling multicollinearity, as they produce the smallest MSE and 

MAE values. 

5. Conclusion 
Multicollinearity is an issue in regression modeling that leads to a 

high variance in the least squares estimator. To address this 

problem in beta regression models, this study develops a beta ridge 

regression estimator. Several ridge parameters     are proposed, all 

of which outperform the MLE estimator in terms of MSE and 

MAE criteria. Among the proposed estimators, the parameters    

and    yield more efficient and reliable results under the conditions 

examined in this study. Therefore, we recommend the beta ridge 

regression estimator for practitioners. 
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